Direct mass measurement for 103 Sn and its impact on rp-process endpoint SnSbTe cycle

Xing $XU^{1,2}$ and on behalf of HIRFL-CSR mass measurment collaboration

¹School of Science, Xi'an Jiaotong University, 710049 Xi'an, China ²Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou, China

The nuclide ¹⁰³Sn was produced by projectile fragmentation of ¹¹²Sn at a energy of 400 MeV/u, and its mass was directly measured by a storage-ring based isochronous mass spectrometry at HIRFL-CSR facility in Lanzhou, China. The new mass value deviated the literature one, which was indirectly determined from β -decay spectrum of ¹⁰³In, by about 2.5 σ , and the mass precision was improved by a factor of two.

Since the decay energies of proton or α particle were precisely measured in the decay chain of $^{112}Cs(p)^{111}Xe(\alpha)^{107}Te(\alpha)^{103}Sn$, masses of other three nuclides will also shift following the change of ^{103}Sn mass. The mass surfure of the four isotopic chain seem to be more smooth according to the systematic behavior of two-neutron separation energies.

Astrophysical network calculations indicate that the rpprocess inx-ray bursts ends at a SnSbTe cycle and cannot proceed past telthe low α separation energies of neutronlurium isotopes due to The main reaction flow of this cycle is deficient tellurium isotopes. ¹⁰³Sn $(\beta +)^{103}$ In $(p, \gamma)^{104}$ Sn $(\beta +)^{104}$ In $(p, \gamma)^{105}$ Sn $(p, \gamma)^{106}$ Sb $(p, \gamma)^{107}$ Te $(\gamma, \alpha)^{103}$ Sn.

The change of ¹⁰⁷Te mass will influence on the competition between ¹⁰⁶Sb $(p, \gamma)^{107}$ Te and 106Sb $(\beta+)$ 106Sn, and thus determine the amount of the SnSbTe cycle. However, since the reaction rate of ¹⁰⁶Sb $(p, \gamma)^{107}$ Te is about 3 orders of magnitude stronger than that of ¹⁰⁶Sb $(p, \gamma)^{107}$ Te. Our new mass will not change amount of the SnSbTe cycle too much.